Role of boundary conditions in determining cell alignment in response to stretch.

نویسندگان

  • Kellen Chen
  • Andrea Vigliotti
  • Mattia Bacca
  • Robert M McMeeking
  • Vikram S Deshpande
  • Jeffrey W Holmes
چکیده

The ability of cells to orient in response to mechanical stimuli is essential to embryonic development, cell migration, mechanotransduction, and other critical physiologic functions in a range of organs. Endothelial cells, fibroblasts, mesenchymal stem cells, and osteoblasts all orient perpendicular to an applied cyclic stretch when plated on stretchable elastic substrates, suggesting a common underlying mechanism. However, many of these same cells orient parallel to stretch in vivo and in 3D culture, and a compelling explanation for the different orientation responses in 2D and 3D has remained elusive. Here, we conducted a series of experiments designed specifically to test the hypothesis that differences in strains transverse to the primary loading direction give rise to the different alignment patterns observed in 2D and 3D cyclic stretch experiments ("strain avoidance"). We found that, in static or low-frequency stretch conditions, cell alignment in fibroblast-populated collagen gels correlated with the presence or absence of a restraining boundary condition rather than with compaction strains. Cyclic stretch could induce perpendicular alignment in 3D culture but only at frequencies an order of magnitude greater than reported to induce perpendicular alignment in 2D. We modified a published model of stress fiber dynamics and were able to reproduce our experimental findings across all conditions tested as well as published data from 2D cyclic stretch experiments. These experimental and model results suggest an explanation for the apparently contradictory alignment responses of cells subjected to cyclic stretch on 2D membranes and in 3D gels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geomorphic Analysis in Determining Coastal Cells and Its Role in Coastal Management (Case Study: Bandar Anzali to Chalous Coasts)

Introduction Due to the different geomorphological and morph dynamic forces of the coastal area, they form different areas. Each of these areas requires its own coastal management. While in our country, coastal management is done without considering the characteristics and coastal characteristics of each coast. In this study, in order to classify coasts and determine coastal cells, morph dynam...

متن کامل

Effect of mechanical boundary conditions on orientation of angiogenic microvessels.

AIM Mechanical forces are important regulators of cell and tissue phenotype. We hypothesized that mechanical loading and boundary conditions would influence neovessel activity during angiogenesis. METHODS AND RESULTS Using an in vitro model of angiogenesis sprouting and a mechanical loading system, we evaluated the effects of boundary conditions and applied loading. The model consisted of rat...

متن کامل

A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow

The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...

متن کامل

Low Velocity Impact Response of Laminated Composite Truncated Sandwich Conical Shells with Various Boundary Conditions Using Complete Model and GDQ Method

In this paper, the dynamic analysis of the composite sandwich truncated conical shells (STCS) with various boundary conditions subjected to the low velocity impact was studied analytically, based on the higher order sandwich panel theory. The impact was assumed to occur normally over the top face-sheet, and the contact force history was predicted using two solution models of the motion which we...

متن کامل

Simultaneous Optimization of the Production of Organic Selenium and Cell Biomass in Saccharomyces Cerevisiae by Plackett-Burman and Box-Behnken Design

Selenium (Se) as a vital trace element has many biological activities such as anti-inflammation and anti-oxidation. Selenomethionine as an organic selenium plays a vital role in the response to oxidative stress. At present, Saccharomyces cerevisiae is one of the best microorganisms that has the ability to accumulate selenium. Production of Seleno-yeast was done by growing Saccharomyces cerevisi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 115 5  شماره 

صفحات  -

تاریخ انتشار 2018